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In a turbulent two-dimensional flow enstrophy systematically cascades to very 
small scales, at which it is dissipated. The kinetic energy, on the other hand, re- 
mains at  large scales and the total kinetic energy is constant. Above random 
topography an initially turbulent flow tends to a steady state with streamlines 
parallel to contours of constant depth, anticyclonic around a bump. A numerical 
experiment verifies this prediction. In  a closed basin on a beta-plane the solution 
with minimum enstrophy implies a westward flow in the interior, returning in 
narrow boundary layers to the north and south. This result is interpreted using a 
parameterization of the effects of the eddies on the large-scale flow. The numerical 
solution is in qualitative agreement, but corresponds to a minimum of a more 
complex measure of the total enstrophy than the usual quadratic integral . 

1. Introduction 
This note considers two-dimensional turbulence in a homogeneous layer of 

almost inviscid liquid in a thin quasi-planar shell of irregular thickness, the whole 
system rotating rapidly about the normal axis. If the Rossby number for the flow 
and the fractional change in layer thickness are both small compared with unity, 
and if dissipation is temporarily neglected, the dimensionless equation of motion 
may be written as 

where 

is the material derivative following a fluid particle with the non-divergent flow 

and h(x, y) is the local fractional change in layer thickness divided by the Rossby 
number, hereafter called the ‘topography’. Equation (1) then states that the 
potential vorticity 

is constant on a fluid particle, and implies that for suitable lateral boundary 
conditions the total enstrophy 

u = -a@/ay, v = a p p x ,  (3) 

p = V 2 @ + h  (4) 

Q = &j-(V2@+h)2dzdy (6) 
and energy E = a/(V$)2dx d y  (6) 
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University, Cambridge, Massechusetta 02138. 
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are invariant with time. Except for the inclusion of the ‘topographic’ term h these 
equations are identical with those of conventional two-dimensional turbulence. 

The motivation for this study came from the recently discovered mesoscale 
eddies in the deep ocean, but this application will be elaborated elsewhere. 
Meanwhile the time evolution of an initially random flow described by (1) may be 
regarded as an interesting fluid-dynamical problem in its own right. It will be 
seen that the topographic term dramatically changes the character of the non- 
linear development of the turbulent spectrum. 

Although most of the principles are valid for quite genera1 topography, the 
discussion is orientated around the assumption that h(x, y) has the qualitative 
character implied by an isotropic spectrum proportional to K - ~ ,  where K is the 
total wavenumber. This spectral shape approximates that of irregularities on the 
floor of the ocean in many areas (Bell 1975). The mean-square slope = IVhI2 is 
then formally infinite, but when, as in practice, contributions to it are cut off at a 
maximum wavenumber K,, it has a finite value 

- 

% = KO, (7) 

i.e. the one-dimensional slope spectrum is white. 
We shall introduce later an additional constant large-scale slope described by 

h = By, (8) 

simulating the variation of the Coriolis parameter with latitude, which is so 
important in geophysical fluid dynamics. The random topography will then be 
seen to be crucially important in effecting transfers between the large-scale 
potential-vorticity field By and the enstrophy associated with the eddies them- 
selves. It will also be shown to be associated with the generation of large-scale 
circulations. 

2. The enstrophy cascade 
The evolution of a turbulent flow field described by (1) with h = 0 is well 

understood in qualitative terms (Batchelor 1969). If U is a typical particle velocity 
and L the dominant length scale of the eddies, U is approximately constant but L 
increases with time as small eddies coalesce to form larger ones a t  a rate com- 
parable to UlL. Kinetic energy is thus systematically transferred to smaller 
wavenumbers (an inverse cascade) while enstrophy is cascading to larger wave- 
numbers. 

The deep-seated character of this process may be seen by considering a moving 
circuit C of fluid particles (figure 1) each with the same vorticity q (Batchelor 
1969). An inherent property of turbulent motion is that neighbouring fluid 
particles tend, on the average, to separate systematically, so the length I of such 
a circuit increases approximately exponentially with time. Since the area 
enclosed by C is constant it becomes more and more convoluted, with a finer 
and finer structure. This is the cascade of p to high wavenumbers, a kinematic 
property of the turbuluence which continues until viscosity (however small) 



Two-dimensional turbulence above topography 131 

81 
BIUURE 1. Two neighbouring circuits C and G' of material particles being deformed and 
stretched in a turbulent flow field. The potential vortioity q is constant around C, and has 
the value q + Sq around C'. 

ultimately dissipates the fluctuations on some suitably small scale. Thus the 

(9) 
total enstrophy 

Q = &Inz dx dy  

must in practice decrease with time, at a rate set primarily by the larger energy- 
containing scales of motion, which contribute to the strain field, and essentially 
independent of whatever small-scale dissipative mechanism is invoked. 

Kinetic energy, on the other hand, is not tied to specific particles, and this 
argument does not apply. Indeed, because the enstrophy associated with a 
Fourier component of wavenumber K is K~E(K) ,  where E(K) is the energy, a small- 
scale dissipative process will reduce the total enstrophy much faster than the 
energy, and in the limit of infinitely large K ,  at which all such dissipation takes 
place, the total energy E must remain effectively constant. Thus we are led to 

(10) 
conclude that Q = x K 2 E ( K )  

decreases, whereas E = X E ( K )  (11) 

K 

I( 

is constant, which can occur only if E(K) becomes concentrated more and more at 
smaller values of K .  Hence the inverse energy cascade. 

It is worth noting some of the subtleties of this argument. There is an implicit 
assumption that the vorticity q is dynamically sufficiently passive that the 
particular line elements lying in a contour of constant p are not exceptions to the 
general rule that time elements tend to grow in a random strain field. This assump- 
tion is plausible if the local rate of strain is dominated by contributions from a 
wide range of scales, but the very existence of complicated steady flows in which 
contours of q and $ coincide shows that such exceptions can exist. The indefinite 
extension of such circuits C is, however, a definitive indicator of the cascade. 
For consider a neighbouring circuit C' consisting of particles of vorticity q + Sq, 
where Sq is infinitesimal. The area of the band between C and C' is constant, so as 
the length 1 of either increases the average separation between them must become 
less, i.e. IVqI2 must tend to infinity, and dissipation must cause a definite decrease 
in the magnitude of Q .  The extent of the reduction in total enstrophy clearly 

9-2 
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depends on the proportion of the fluid elements which are subject to such drastic 
strain. The numerical experiments of Herring et ul. (1974) demonstrate con- 
vincingly that for conventional two-dimensional turbulence the cascade is 
indeed a rapid and dominant effect. 

3. A minimum-enstrophy principle 
Now consider a similar argument when the topographic term is present. The 

potential vorticity q is still constant on fluid particles, and in the absence of dis- 
sipation Q and E,  defined by (6) and (6), are invariants. However if there is a 
cascade, as defmed by the indefinite extension of a significant fraction of the 
contours of constant q, the enstrophy Q must decrease with time. It thus becomes 
meaningful to ask: what is the flow pattern which minimizes Q for a given E ?  We 
shall treat this first for the simplest boundary conditions, in which both R(x, y )  
and $(x, y )  are assumed to be periodic in x and y with some large period X .  Having 
found the minimal flow pattern, we shall then discuss its relevance to turbulent 
development. 

The first problem is a simple exercise in the calculus of variations. We require 

(12) 

to vanish for a11 infbitesimal variations S$ which are also periodic with period X. 
The parameter ,u is a Lagrange multiplier, a constant to be determined later. 
Using the periodicity to eliminate the outer V 2 ,  we infer a necessary condition 

SQ -I- pSE = I (V2$ + h) S(Va$) dx d y  + p J V $ -  V S$ dx d y  
= JV2{V2$+h-p+}S$dXdy 

V2$+ h = p+. (13) 

This is easily solved in terms of Fourier transforms. If 

h(x, y) = x f f  exp [i(kx + ~ y ) ]  

then 9 = f f / O L + K ” ,  (14) 

k, 1 

where K~ = ka + la. 

each value of the constant p. p defines a length scale 
Equation (14) shows that there is indeed a unique stationary solution $o for 

Lo = p-4 (16) 

(16) 

such that on scales small compared with Lo 

q = V2yk0+h N 0. 

This is consistent with fluid particles being swept completely over small-scale 
bumps, the associated contraction of vortex lines implying anticyclonic vorticity 
in regions where the shell is relatively thin. However, on scales large compared 

(17) 
with Lo 

so that the flow is along contours of constant h(z, y ) .  Since the ~2 term in (14) 
diminishes the magnitude of 9 below the value p-%, the overall flow pattern 

$0 - p-% 
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@o (x,y) can be characterized aa similar to h(x,y)  but with scales smaller than 
Lo smoothed out. 

To determine Lo, note that the mean-square particle speed is 

where So is the root-mean-square ‘slope’ smoothed to exclude wavenumbers 
greater than pi = L;i. Because of the non-dimensionalization in (l), So is the 
true slope times the ratio of horizontal to  vertical scales, divided by the Rossby 
number. Thus, for a given energy level E equation (18) may be solved for p. For 
the preferred topography in which the one-dimensional spectral density is 
proportional to K - ~ ,  

In  any case p has to be positive, otherwise contributions in (18) from wave- 
numbers near ~2 = -p would imply an effectively infinite kinetic energy density. 
Thus the flow is not only approximately around contours of constant h, but also 
has a definite sign: anticyclonic (clockwise) circulation around a bump, cyclonic 
around a hollow. 

We see therefore that for each total energy E there is a unique flow field 
@o(z, y) for which Q is stationary to small variations. It is readily demonstrated 
that for positive p this is in fact a minimum. Such a flow field is aIso stationary in 
time, because the potential vorticity q is constant along contours of constant @. 
This is no accident, as may be seen from the following argument. Suppose +o were 
to develop in time to a different field +‘. In  an inviscid flow the total enstrophy 
and energy would be constant, i.e. they would have to equal those for 1Cr0. But it 
has just been demonstrated that the only field +’ with this enstrophy and energy 
is Po. Hence no development can occur. 

Locc u). (20) 

4. The development of turbulent flows 
How is this minimum-enstrophy solution relevant? We have seen how the 

random but systematic stretching of time elements in a turbulent flow implies an 
enstrophy cascade. So long as this persists Q must decrease. Yet Q is bounded 
below by the value Qo appropriate to the overall energy level B and the topo- 
graphy h(x, y). Thus the flow must tend towards some state in which the cascade 
is halted, i.e. a steady state in which 

(21) 
where P is some possibly nonlinear function which is single valued at leaat along 
each closed streamline. It will be seen later that in practice this does usually 
occur, and furthermore P is nearly linear. Then +o (2, y) as given by (13) and (18) 
is a good approximation to the final flow pattern, though by no means a perfect 
one. The time scale for this transformation seems to be a multiple of Lo/U. Thus 
the minimum-enstrophy principle appears to provide a useful framework for 
discussing the evolution of an initially turbulent flow above topography. 

q = V2@+h = P(+), 
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However, we shall show in the appendix that in fact there are many alternative 
formulations of this principle, each one designating an absolutely stable steady 
state corresponding to a different monotonically increasing function F in (21). In 
any given realization only one of these measures is actually minimized, each of the 
others tending to a constant value larger than its minimum. Which ultimate 
steady state is selected must depend in some presently unknown way on the 
initial conditions. For some initial states the flow described by (13) is certainly 
inaccessible, even though the total energy may correspond. These tantalizing 
considerations in no way negate the remaining conclusions of this paper, but do 
show that all is not well understood. Nevertheless, the overwhelming conclusion 
remains that, given a continuing enstrophy cascade at approximately constant 
total energy, the turbulence must evolve into a steady state in which the flow on 
the larger scales is along contours of constant h, with h increasing to the right. A 
similar tendency for the flow to follow contours, but not the steady state, was 
noted by Holloway & Hendershott (1974). 

5. The role of saddle points 
Before discussing the experiment designed to  test these arguments, three 

points need clarification: the nature of the cascade when the flow is near fcl0, the 
precise role of viscosity and the influence of boundaries. If we set 

and linearize in #, (1) becomes 

where J is the Jacobian operator. The first two terms describe the advection of 
vorticity by the flow $o, the last term the production of perturbation vorticity 
by flow across the contours of constant qo. The qualitative nature of the motion 
depends on whether the scale L of the perturbation is large or small compared 
with Lo. If it  is large, the last term dominates, and we have essentially topographic 
Rossby waves with phase speed much greater than U .  If, on the other hand, 
L < Lo the perturbation vorticity is advected by the flow field $o. 

Of particular interest are the neighbourhoods of saddle points of $o (2, 9). It is 
well known that in such persistent deformation fields gradients of a passive 
advected scalar are greatly amplified as sinusoidal variations are aligned parallel 
to the outflow axis and compressed in the perpendicular direction. It is less 
obvious that such saddle points are also traps for topographic Rossby waves. If 

$o = ax2 - bya 
equation (23) becomes 

(24) 
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This haa solutions of the form 

if 

and 

These equations have the solution 

where 

The constants a and /3 are determined by the initial values of (k, 1). Except for the 
very special case ct = 0, k2 + l2 -+ co as s --f co and s --f 00 coincides with t + co. The 
vorticity amplitude (k2+Z2)$ is constant in this process. Thus, if an initial 
localized field $(x, y )  is Fourier transformed, each individual component ulti- 
mately cascades into such small scales that it will be dissipated. 

6. The role of viscosity 
So far i t  has been assumed without question that viscosity or other dissipation 

always reduces the total enstrophy. This cannot be strictly correct, as the follow- 
ing paradox demonstrates. Equation (12) shows that any small change &$ 
whatever from the flow field $o results in changes SQ and &E in enstrophy and 
energy which are of opposite sign. Thus a reduction in enstrophy must be asso- 
ciated with an increase in energy. How then does a minimum-enstrophy flow 
field $o decay? 

In the presence of a slight viscosity v equation (1 )  may be written as 

D(V2$ + h)/Dt = YV2(V2$), (31) 
so that aQ/at = vJqV2(q - h) dS 

= -vJVq.V(q-h)dS.  (32) 

Thus, only if the dissipation is concentrated in scales for which h < q does Q 
necessarily diminish with time. If Y is small this condition is certainly satisfied 
in all but the very last stages of the cascade into $o, but for the flow field $o 
itself aQ/at is slightly positive. The experiments described later do indeed show a 
large, rapid decrease of Q followed by a slight, slow increase in the final stages. 

7. Closed-basin solution 

the flow in a closed square basin S with a boundary I? at which 
Another point requiring attention is the influence of boundaries. We consider 

$ = O  (33) 

but with no local restriction on the tangential velocity a$/an. This inviscid 
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FIGURES 2(a, b ) .  For legend 888 next page. 



Two-dimensional turbulence above topography 137 

A -  

B -  

+ 2 n L 0  4 

FIGURE 2. Experiment 1. (a) Topography. (b)  Initial stream function. (c) Final stream 
function. (d )  Final potential vorticity. Negative oontoura are broken curves, positive 
aontours are solid. In (c) the circled numbers label the four qudranta; sections along AA' 
and BB' are shown in figure 4. 
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condition is, however, not quite adequate because the total circulation 

C = l r g d s  (34) 

is then a constant of the motion and must be treated as given a priori when com- 
puting the minimum-enstrophy condition. For arbitrary variations satisfying 
$ = 0 on I? we require 

After several integrations by parts this yields 

V2{V2$+h-p$} = 0 withins (36) 

and V 2 $ + h + h  = 0 o n r .  (37) 

Thus, using (33) V2$ -p$ = - (h  + A )  within S.  (38) 

The additional parameter h is determined by the requirement (34) that the 
integral of V2$ over the whole area should equal C .  

Given the boundary condition $ = 0, (38) may be readily treated by half- 
range Fourier series, and the solution is formally identical to ( 14), except that the 
wavenumbers (k, I )  are differently quantized. 

8. A numerical experiment 
We now describe a numerical simulation designed to test the ideas put forward 

above. The experiments were carried out in a square domain with $ = 0 on the 
boundary, with a pseudo-spectral model based on a 64 x 64 half-range sine series 
as the horizontal expansion. To concentrate the dissipation at the highest possible 
wavenumbers consistent with the model resolution a fourth-order frictional 
mechanism wa8 used instead of a regular viscosity, i.e. the right-hand side of (31) 
was replaced by 

implying a corresponding change in (32) to 

- V’V4(V2@), 

aQ/at = - V’ JVzqV2(q - h) dS. 

This formulation is consistent with a slip condition at the boundary I?, though 
the circulation around is not strictly constant. However, since the only transfer 
of vorticity across I? is diffusive, the circulation just outside a narrow boundary 
layer, which is the integral of the vorticity over the whole interior, should indeed 
be independent of time. The coefficient v‘ was chosen to give a spin-down time 
at the wavenumber (16,16) comparable to the expected relaxation time 4n Lo/U 
of the flow field into the steady state. Smaller wavenumbers are scarcely damped 
at all, but over the next two octaves up to the limit of resolution at the wave- 
number (64, 64) the damping rate increases very rapidly, as 14. The nonlinear 
terms in (1) were calculated using pseudo-spectral analogues of the well-known 
Arakawa (1 966) conservative schemes. Besides assuring conservation of energy 
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FIGURE 3. {[8(Va$)/8fJa}~ averaged over the basin as a function of time. The eddy turnover 
time 4.1rL,/Uo is approximately 210 days. 

and enstrophy (apart from dissipation), this formulation is formally of ‘infinite’ 
order in the usual spectral sense (Orszag 1971). Stepping forward in time was 
accomplished by the Lorenz (1971) N-cycle method with N = 4 in experiments 1 
and 2 and N = 2 in experiment 3. 

The topography h(z, y) used in experiment 1 is shown in figure 2 (a). The initial 
stream function, shown in figure 2 (b ) ,  developed into a very nearly stetidy state, 
represented by figure 2 (c )  and its associated potential-vorticity field, figure 2 (d). 
During this 600 day period the total energy dropped by 68 yo. Figure 3 shows the 
root mean square of aq/at, probably the most sensitive indicator of residual un- 
steadiness. In  fact the major flow features were already set by day 200. In  the final 
state the parallelism of contours of I+4 and q is immediately apparent, verifying 
(21). The linearity of the functions( I+4) is illustrated in figure 4 from sections along 
the lines AA’ and BB’ marked in figures 2 (c )  and (d) .  It is clear that there is strong 
qualitative agreement with the minimum-enstrophy solution I+4ro of (13), but 
there are some significant differences. For example, in the dosed anticyclonic 
gyre near B, F(+) is still approximately linear but has only two-thirds of the value 
appropriate in the central cyclonic eddy which dominates the pattern. Another 
view is provided by the scatter diagrams in figures 5 (a) and ( b )  for the lower two 
quadrants of the flow field. The solid 45” line corresponds to the least-squares 

(39) 
best fit 

q = P$-  
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B s 

FIQURE 4. The stream function @ (solid curves) and potential vorticity q (dotted ourves) 
along sections AA' and BB' in Sgures 2(c) and (d) .  

for the field aa a whole. The deviations in the gyre near B show up as the cloud of 
points below the line on the positive side of the origin in quadrant 3. However, the 
corresponding diagram for quadrant 4 shows deviations in the opposite sense, 
associated with the gyre in the bottom rigbt-hand corner. Thus to a reasonably 
accurate approximation the steady state attained in this simulation is identical 
to that of the minimum-enstrophy solution defined by (14), with the proviso that 
the value ofp may differ in each of the major closed eddies by a factor as large as 2. 

Two further checks on the theory were made. Figure 6 shows the one-dimen- 
sional spectrum of the north-south slope ah/ay averaged over the east-west 
co-ordinate, together with the corresponding epectra for the easiiwest component 
of velocity- a+k/ay at day 600 and for the minimum-enstrophy solution com- 
puted from (14). For the latter p was taken from (39) with h = 0. L0-l= p* 
corresponds to a wavenumber of 12.9 in the model. (Because of the choice of basis 
functions, a wavenumber of 1 implies a wavelength twice the width of the area 
shown in m e s  2 (u-d).) It is noteworthy how averaging over the lateral co-ordi- 
nate to obtain one-dimensional spectra leads to systematic differences in shape 
between those for slope and velocity, even at length scales substantially greater 
than Lo. The agreement between spectra for a$/ay and a$o/@ is remarkably 
good. 

On the other hand, visual inspection of successive plots of potential vorticity 
yielded no convincing evidence for the role of saddle points of $,, as traps for 
transient potential-vorticity fluctuations of ever decreasing scale. Nevertheless 
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FIGURE 6. Scatter diagram for potential vorticity w. stream funation for (a) quadrant 3 
and (b)  quadrant 4, defined in figure 2. The 46' line is the mgreeeion line for all quadrants 
oombind 



142 F.  P .  Bretkrton and D. B. Haidvogel 
x 10'8 

Wavenumber, 1 
FIGURE 6. One-dimensional spectra for the final state in experiment 1 va. north-south 
wavenumber. Ordinates : - . - . -, slope spectrum, 1 0 8 ~  Zklhkzls; - , velocity 
spectrum predicted from (la), ZaCklhKzla/(p+ks;)a; --- , computed velocity spectrum, 
Z8 &[fC k l l  2. Equal areas beneath the curves correspond to equal contributions to the 
variance. 

figure 7 shows the r.m.s. value of aq/at averaged over days 300-600, i.e. over the 
last part only of the flow development. It will be seen that the transient activity 
was mainly confined to a band extending around half the periphery of the central 
gyre in figure 2 (c) with an additional centre just upstream of the stagnation point 
close to A .  During the period under consideration a particle initially at point S 
would have moved to point 8'. Very little activity appears to pass the diffluent 
zone at the bottom right of quadrant 3. Thus the evidence for the suggested trap- 
ping mechanism in the later stages of the enstrophy cascade is ambiguous. 

Finally, we make some comments on space and time scales. The experimental 
unit of one day is purely nominal, without significance except in association with 
scales for h and velocity. For the final state $(x, y), the best-fit coefficient in (39) 
defines a length scale Lo = p-4. The corresponding wavelength 2nL0 is indicated 
in figures 2(c) and (d )  and does indeed appear to be a minimum scale for dis- 
tinguishable features. From the final r.m.8. speed U we have a time scale 

To = Lo/U = 16.9 days. 

However, in two-dimensional turbulence without topography it is the eddy 
turnover period which is the e-folding time for the enstrophy or the shape of the 
velocity spectrum. This is roughly 4nL/U, where L is the dominant length scale, 
corresponding in figure 2 ( b )  roughly to a wavenumber of 6, or about 2L0. Thus, 
allowing for the larger initial value of U a more relevant comparison interval is 
300 days. For the parameters used the dissipation at scale Lo is quite significant 
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FIGURE 7. { [ a ( V a y ? ) / 8 t ] ~ } ~  as a function of position, averaged over days 300-600. 

over this interval, so it is perhaps not surprising that about half the initial energy 
was also lost during the active enstrophy cascade. Presumably, given a much 
higher spatial resolution and a correspondingly smaller dissipation constant, this 
would not have occurred. 

9. The effects of p 
Now consider the addition of a large-scale slope h = By to the random topo- 

graphy considered earlier. In  deference to geophysical applications y will be 
assumed to increase towards the north, and ,!? to be positive. We suppose first 
that the cascade proceeds essentially as before, and recompute the minimum- 
enstrophy solution for given total energy E. In  so far as the ,!?-slope can be thought 
of as a Fourier component of zero wavenumber the solution may be instantly 
obtained : 

Thus the effect is to add a large-scale flow of magnitude from the east. The 
sign follows from positive ,!? being equivalent to a shallower layer towards the 
north. If this feature were local, the minimum-enstrophy flow around it would be 
anticyclonic, i.e. from the east. The total potential vorticity is again constant 
along the revised streamlines, but there is no provision for the flow to return. 

I n  a closed basin, however, this cannot be. Therefore the influence of boun- 
daries must be non-trivial. It is now the total potential vorticity 

Q = V2$+h+&/ (41) 
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FIGURE 8. Sch 

I 

Ii?) matic stream function for the Fofi 

0 noff solution. 

which is constant on fluid particles, but the only difference to (36)-(38) is the 
addition of a term @' which satisfies 

with 
vzf -,UP = - t!?y within S 

$ ' = O  onr .  

The formal solution in half-range Fourier series proceeds as before, but in the 
important case when Lo = p-4 is much less than the dimensions of the basin S a 
boundary-layer description is more informative. This shows (@me 8 )  an emterly 
current 

II.' = (#?l,U)Y 
throughout the interior, but a narrow return flow in boundary layers of width 
p d  all around r. These solutions 11' and associated boundary currents were first 
described by Fofonoff (1954) as a model for the circulationin the oman, but they 
are revealed here as an integral part of the minimumenatrophy state agsociated 
with flow above irregular topography on a #?-plane. How far they will in fact be 
set up depends on the extent of the enstrophy cascade by the small-scale eddies 
over the interior region I 

10. Experiments 2 and 3 
To investigate this striking prediction only a simple modification of the pre- 

vious experiment is required. The dimensionless parameter K = So/#? is a 
measure of the typical slope of the random topography smoothed to a scale Lo 
relative to the large-scale slope equivalent to 8. When R 9 I there are a large 
number of closed contours of h+,!?y. When R 1 the contours are all open, 
describing small perturbations from a uniform gradient. Figure 9 shows the 
contours for experiments 2 and 3, for which R = 2. This value was chosen be- 
cause it was anticipated that for smaller R the flow would probably resemble 
linear Rossby waves, for which the enstrophy cascade is very weak, whereas for 
larger R it would differ too little from that for R = co, which corresponds to 
experiment 1. 
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FIGURE 9. Initial topography with beta for experiment 3. 

Accordingly, apart from this addition of the Fourier sine series corresponding 
to fly, the initial conditions for experiment 2 were identical to those described 
previously. The results were a disaster ! No large-scale flow developed: instead the 
pattern degenerated into a few stationary small-scale isolated eddies which dissi- 
pated rapidly, the total energy E falling three times as fast as in experiment 1. 
The reasons for this behaviour arenot completely understood, but it is important 
because i t  highlights the limitations of the  minimum-enstrophy arguments. I n  
any real experiment at finite Reynolds number some energy dissipation will 
always occur, but is it  slow enough relative to enstrophy dissipation for the 
qualitative features of the quasi-steady minimum-enstrophy flow to appear? If so 
the previous discussion is all relevant. Nevertheless, there is no a priori reason 
why energy and enstrophy should not cascade simultaneously to high wave- 
numbers if the flow structure adjusts itself appropriately, and apparently that is 
what happened in experiment 2. 

In  experiment 3 the initial velocities were increased by a factor of 4, and the 
initial stream function was rotated by &r relative to the topography. The dissipa- 
tion coefficient was left unchanged. The stream function and potential vorticity 
after 500 days are shown in figures 10 (a) and ( b ) .  

Several features are immediately apparent. The interior flow shows an easterly 
trend, with the return along the southern boundary and to a lesser extent along 
the north. The parallelism between @ tmd q is present, but is not as ‘clean’ as in 
experiment 1, indicating residual transient disturbances, which appear to be 
linear oscillations. The functional form of the dependence of q on @ departs sub- 
stantially from linear, most of the changes in p being concentrated in only two 

10 FLM 78 
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FIGURE 10. Experiment 3. (a) Final stream function. (b)  Final potential vorticity. 
Broken curves are negative contours. 
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-1.00 t 
F I a m  11. Scatter diagram for potential vorticity 2)s. stream function for the entire 

domain of experiment 3 (see figure 10). 

contour intervals for $. This is confirmed by the S-shaped appearance of the 
scatter diagram (figure 11). The scale Lo determined by a least-squares fit to a 
straight line is nearly twice the previous value but only 23 yo of the sixteen-fold 
initial kinetic energy was lost in these 500 days. Thus the adjustment time scale 

To = Lo/Uo = 6.1 days 

is much less than before and in dynamical terms the integration period is longer 
by a factor of 2.2. The reasons for the greater persistence of the transients are not 
clear, although it may possibly be due to the absence of major saddle points. 

We conclude that this experiment did confirm qualitatively the predictions 
of the enstrophy-cascade arguments, though the final state departs more drasti- 
cally from the minimum-enstrophy solution than in experiment 1. In  particular 
it shows the generally easterly flow parallel to contours of h +by, together with 
the associated boundary layers, but the details are Iess clear cut than in experi- 
ment 1. 

10-2 
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11. The effect of eddies.on a large-scale flow 
To complete this discussion we need to understand how the Fofonoff solution 

could be driven by small-scale turbulence on the scale of the random topography, 
and to recognize the transfer process between the large-scale potential vorticity 
By and the diffusive enstrophy cascade. The topography plays a crucial role in 
this transfer. We are concentrating on the transition period while the flow retains 
its turbulent character. For this purpose we divide the stream function and 
potential vorticity into 'large-scale' and 'small-scale' parts : 

$ = Y+$', q = (Vay+&)+(V2$-'+h),  (43) 

where @' is assumed to be random with zero mean y. The ensemble average 
denoted by the overbar is most usefully associated with random realizations of 
the topography h(x, y ) ,  but in some circumstances may be equated with the 
spatial average over an area large compared with the individual eddies but small 
compared with the scale for Y. It may certainly not be considered a time average 
for given h(z, 2). Equation (1) may then be separated into a large-scale part 

and an eddy part 

aq'p + JjY + p, a') + J ( p ,  V2Y +By) - J($', a') = 0.  (45) 

A separation of this sort was implicit in the numerical experiments described 
by Bretherton & Karweit (1975), which modelled the mesoscale eddies in the 
ocean. There the large-scale flow was modelled by a uniform stream 

- a ~ l a y  = u, aQla = p (46) 

(47) 

The periodic condition assumed for +' and q' implies automatically that J(p' ,  p') 
vanishes, and no area average of aq'lat over a square of side X can arise. 

Whereas this seems a plausible separation when considering the small-scale 
eddies themselves, a different perspective is necessary when describing their 
effects on the large-scale flow. The right-hand side of (44) may be written as 

so the eddy equation became 

a q p  + uaq'lax + ~ ( $ 1 ,  qi) +p$; = 0. 

-J($',q') = -V*F, (48) 

where F = ,,p.' is the local flux of eddy enstrophy. In  a statisticaIly homogeneous 
situation F may be non-zero but is independent of position. In  a nearly homo- 
geneous flow it may still be a good approximation to model the eddies locally by 
an equation like (47) with periodic boundary conditions, the large-scale velocity 
U being regarded as uniform over the area of integration and as a given function 
of time. F may then be computed as the area average of u'q'. To the extent that 
this area average (for one realization h'(x, 9 ) )  indeed approximates the ensemble 
average defined above (at a fixed (x, y) but over many realizations h') Fmay now 
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be regarded as a function of position on the large scale. Inhomogeneities in the 
statistics for h'or in the initial eddy energies will imply divergences ofP and thus 
changes in the large-scale flow. In any real case this division by scale is clearly an 
idealization, but presumably is valid asymptotically as spatial inhomogeneities 
in the eddy statistics become truly slowly varying relative to the dominant scale 
of the eddies themselves. The estimation of F in a locally homogeneous small- 
scale turbulent field then becomes the central problem. 

In  practice, gradients in large-scale potential vorticity are likely to be domi- 
nated by P. Turbulent diffusion in such a gradient inevitably gives rise to eddy 
fluxes F, but there are several other manifestations of the transfer of large-scale 
to small-scale enstrophy which deserve to be understood. If 

q' = V2$'+h (49) 

(50) 

(51) 

is the eddy enstrophy, (1) may be written as 

Dq'/Dt = -Pv' = -p$;. 

Q' = -P% 
Following a line of reasoning originally begun by Taylor (1921) this may be inte- 
grated to give 

where 7 is the northward displacement from its original position of the particle 
currently at (x, y). Averaging over the ensemble of particles comprising the 
turbulent field, and assuming that the latter is statistically homogeneous, the 
eddy diffusivity may be related by a remarkable series of connexions in turn to the 
rate of increase of the dispersion of a cloud of marked particles, to the source of 
eddy enstrophy, to the northward flux of potential vorticity, to the average 
easterly large-scale body force exerted by the eddies, to the topographic drag 
associated with pressure differences in the east-west direction across bottom 
relief, and to the northward virtual mass flux which arises if the bottom relief 
h(z,  y) is replaced by a plane surface. No one of these is a complete description of 
the particle migration; they are all aspects of the same phenomenon. Thus 

D = d(+?)/dt = /?-2d($p.'")/dt (5% 6 )  
- 

- - - P-1 q'v' = - P-lFW) = -p-'(V2$' + h)  $: (52 c-e) 

= -p-'p(a$ = /j-lJf(U). (55% h) 

Most of these steps should be self-explanatory. 
Equation (52f) clearly describes the divergence of the Reynolds stresses 

associated with an easterly momentum transfer to the large-scale flow. Now, 
remembering that h is the true topography timesf/H, where EI is the total layer 
depth andf the Coriolis parameter, 

P X )  = h7; = - $'ah/& 

is 1/pH times the eastward stress exerted by the container on the fluid through 
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FIGTJRE 12. The diffusive stress P(=) associated with east-west pressure gradients across 
topographic features h(z) .  

pressure differences across topographic features (figure 12). This is usually syste- 
matically of one sign, and if large-scale variations take place only over distances 
large compared with a dominant eddy size, it dominates the first two terms in 
(52f). Hence the passage from (52f)to (52g)is consistentwithour scaleseparation. 

Yet another interpretation arises from considering the changes implied by 
replacing the lower boundary by the plane surface h 3 0. I f  the velocity field 
u' = ( - fy, $;) is extended down to (or truncated at) the new boundary a syste- 
matic error will be made in the overall mass flux, the old exceeding the new by the 
amount - 

This is the virtual mass flux which must be added to the flow above a plane sur- 
face to parameterize the large-scale effect of the topography h. This interpretation 
will be taken up later. 

Now to see how the small-scale turbulence can set up the circulations associated 
with the Fofonoff solution, we note that in the interior of the basin the turbulence 
is indeed associated with a north-south diffusion of fluid particles and a down- 
gradient flux - q'v of eddy enstrophy and that the topographic stress P, is syste- 
matically negative, i.e. trying to accelerate the fluid above towards the west. A 
similar tendency is clearly demonstrated in the multi-level experiments reported 
by Bretherton & Karweit (1976) and only disappears when a large-scale flow has 
been generated in response. This fluid returns eastwards in the northern and 
southern boundary layers. The associated currents display anticyclonic and 
cyclonic relative vorticity respectively, generated by the enstrophy flux diver- 
gence and convergence there required by a southerly flux in the interior yet none 
through the basin boundaries. 

A slightly different interpretation comes from the virtual mass flux M. Suppose 
for the moment that there is no large-scale flow, i.e. the Eulerian mean velocity is 
everywhere zero. I n  the interior there is a southward flux (I?@) < 0) of eddy 
enstrophy, corresponding to a northward virtual volume flux N u ) .  This means 
that fluid would be accumulating near the northern boundary. Because this 
cannot happen there must in fact be a slow southward motion throughout the 
interior of the fluid, resulting in a large-scale westward acceleration there. How- 
ever, near the northern boundary, where M(v) is inhibited, the virtual mean 

M = - ~ ' h .  (63) 
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volume flux at the lower boundary is convergent with upward mean motions and 
horizontal divergence in the fluid above. Thus the mean flow acquires anticyclonic 
relative vorticity near the northern boundary and sets up the narrow return 
current of the Fofonoff solution. When the interior westerly velocity has grown 
sufficiently large, the source of eddy enstrophy ceases, but the small-scale en- 
strophy cascade continues. Then the flow relaxes into a steady state. 

These arguments highlight the importance in this process of eddy-scale topo- 
graphy. In  its absence conversion of large-scale to eddy enstrophy is inhibited, 
because it can be associated only with large-scale gradients of Reynolds stress. 
Two-dimensional turbulence on a beta-plane above a flat bottom evolves quite 
differently, into quasi-linear Rossby waves, for which the enstrophy cascade is 
almost suppressed (Rhines 1975). 

Of course, this analysis is an idealization of what actually happened in experi- 
ment 3, but it might well be more appropriate if the ratio of basin size to eddy 
size were increased. This is a matter of model resolution, which is governed 
primarily by economics. The key concept is of local homogeneity; that is, over a 
scale large compared with individual eddies yet small compared with the scale 
of the large-scale flow, spatial averages closely approximate ensemble averages. 
This is self-consistent only if the dominant contributions to the eddy kinetic 
energy and to the variance of the slope of the random topography come from 
smaller scales and a relatively clean separation can be made from the large-scale 
slope associated with /3. The circumstances under which it is relevant to geo- 
physical problems remain to be explored. 

12. Conclusions 
The enstrophy cascade associated with turbulent eddies in two dimensions 

implies that the flow will tend to approach a state of minimum enstrophy for a 
given kinetic energy. For flow above agiven topography h(z ,  y )  of random charac- 
ter, this state has steady streamlines, proportional to h on the larger scales but 
with the finer features smoothed out. The circulation is anticyclonic around 
shallower regions. Numerical experiment shows that a steady flow resembling 
this is attained within a few eddy turnover times, though the dependence of the 
potential vorticity on the stream function is not linear. Deformation fields asso- 
ciated with saddle points in the stream function may act as traps for small pertur- 
bations from the steady solution, advecting potential vorticity into very small 
scales and hastening the reduction to a steady state. A small viscosity tends to 
dissipate enstrophy on the smallest scales, but can actually increase it on the 
larger ones, accounting for the ultimate, extremely slow decay of the flow through 
a sequence of minimum-enstrophy states. 

When a large-scale slope corresponding to /3 is superimposed, the nonlinear 
evolution depends on the parameter K ,  which measures the openness of the 
resultant depth contours. If K > 1, the enstrophy cascade proceeds, leading 
quickly to a steady small-scale flow with a large-scale easterly current superim- 
posed. I n  a closed basin there is a return flow in narrow boundary layers to the 
north and south, of a form similar to the Fofonoff model of the ocean circulation. 
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These predictions are supported qualitatively by numerical experiment. If K < 1, 
on the other hand, quasi-linear Rossby waves dominate and the cascade is greatly 
slowed. A non-rigorous averaging over the small-scale eddies shows that large- 
scale flows are driven by the eddy flux of potential vorticity. Determination of 
this flux should be the goal of any parameterization procedure for the eddies. For 
spatially homogeneous turbulence on a beta-plane the southward (down- 
gradient) flux of potential vorticity is related to the particle diffusion coefficient 
and to conversion of large-scale enstrophy to eddy enstrophy, as well as to a 
westward stress exerted on the fluid by the topographic features. In  a closed 
basin this stress sets up the easterly flow in the interior region, and qualitatively 
explains the narrow return boundary layers. 
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Appendix 
This appendix was stimulated by Dr Cecil E. Leith, who drew the attention of 

the authors to a theorem by Arnold (1966). This states that, in an inviscid fluid, 
flows with the property that 

are stable to small disturbances. We here present an extension of Arnold's 
approach and new results relevant to a slightly viscous fluid with an enstrophy 
cascade. For simplicity, we consider only an unbounded fluid in which all fields 
tend to zero at infinity. 

q = F($) ,  dF/d$ > 0 (A 1) 

Suppose we define a generalized enstrophy integral 

c? = j- dS, (A 2) 
where G(q) is any twice differentiable function with positive second derivatives. 
This has essentially all the properties of the enstrophy defined by (9). For an 
inviscid non-divergent flow, both q and dS are constant on fluid particles, so Q is a 
constant of the motion. For a slightly viscous fluid 

= [G'(q)vV2(V2$) dS 
J 
c c 

V*{VB'(q)V(q - h)} d S -  V G  'Vq*V(q - h) dS.  = J  J 
Now in an unbounded fluid or one with slip boundary conditions the first term 
vanishes. If also, as in 0 6, dissipation is confined to very small scales where 
V2$% h, 

9 at = -/vG"(q)lVq12dS < 0. (A 3) 

Thus if G ( q )  > 0, the generalized entropy must decrease with time, and since 
G ( q )  is constant along contours of constant q the cascade process is still just as 
previously described. 
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The minimum value of Q for given energy E is given as before by the calculus of 
variations. For suitable boundary conditions, the condition for a stationery value 
is 

We now show that i fp  > 0 the solution to this equation (provided it exists) defines 
a minimum. Let I E Q+,uE 

(A 4) 

(A 6) 

and write $ = +o+Q,. (A 6) 
Expanding in powers of I = I. + I .  + I2 + O(Q,9, (A 7) 

(A 8 )  

(A 9) 

Thus, for positive G" and p, I2 is positive definite, and any slightly perturbed 
state $with the same energy E as k0 must perforce have a larger Q, with equality 
if and only if $ = $o. Thus Zlr,(x, y )  is a unique local minimum, Furthermore, the 
norm defhed by I2 may be used to infer the existence and good behaviour of 
neighbouring solutions of (A 4) as ,u and the functional form B(q) are varied. It 
should be noted that (A 4) together with its subsidiary conditions G", ,u > 0 is 
equivalent to the statement (A 1). Thus for any turbulent realization which 
settles into a steady flow of this form, we can define post hoc the generalized 
enstrophy JG(q) dS which is minimized in this process. All other measures with 
B" > 0 decrease under the cascade at the same time, but do not attain their 
absolute minimum. 

Arnold remarked that for an inviscid fluid Q + p E  is a constant of the motion. 
Hence if Q, is small 12($) must also be constant, and Q, must remain bounded 
(according to this norm) for all time. For a viscous fluid dissipating enstrophy but 
not energy in a cascade this is still true, indeed 11Q,1 I must decrease with time. +o 
is thus an absolutely stable state, as indeed are all the other states found by 
minimizing any permitted measure Q(q). Note that these conclusions fail if the 
viscosityis so large that the dominant dissipation is on scales for whichV2$ and h 
are comparable. 

Finally, we make a few remarks about the case when there are extensive regions 
in the fluid where c" -= 0 (assuming still, without loss of generality, that ,u > 0). 
I f  G" = 1, Po is readily calculable [e.g. replace ,u by -,u in (14)] and is physi- 
cally unacceptable. The following comments are not rigorous, but suggest that 
this behaviour is also typical of the more troublesome nonlinear functions F. 
Condition (A 4) no longer describes a minimum for G, but a saddle point, and 
there are problems with both the existence and the uniqueness of $o. The con- 
clusion appears to be that a steady-state flow like (A 1) in which dq/d$ < 0 in 
substantial regions either does not exist or is likely to be an unstable state which 
the fluid will not attain in practice. 

To show that $o defines a saddle point, consider a general small perturbation Q, 
such t,hat the energy E is unaltered, i.e. satisfying 

G'kol = P k o .  

where 

1, vanishes because (A 4) is satisfied, and 
1 0  = S ( c ( q 0 )  + 4,u I v+o I 2l d% 

1 2  = 4 p % J " )  (V2$)+,ulV$121dS. 



1 54 F.  P .  Bretherton and D.  B .  Haidvogel 

If 1 V $ /  Q 1 V@ol , this is a single weak restriction on @, dominated by the first term, 
and consistent with it we may choose q5 to be predominantly on a scale L either 
much less or much greater than ( - P/,u)*. In  the first case Iz and Q - Qo will be 
negative, in the latter case positive. An initial disturbance of the latter type can 
disappear with time (so that @ reverts to Po) only by propagating into regions of 
the fluid where c" > 0. For if G" < 0, enstrophy cascade and dissipation can 
only incream Q - Qo further. 

Also if G c 0 over substantial regions, i t  is to be expected that 

G(q0)V2$-p$ = 0 (A 11) 

will have non-trivial solutions $ = $o which vanish at  large distances. Then the 
solution of (A 4) is clearly non-unique, because any other function of the form 
@o + where a is infinitesimal, is also a solution. Also @o cannot be a contin- 
uous function of G(q) or p. For if we replace G by G + 6C, where SG is infhitesimal, 
(A 4) becomes 

The right-hand side of (A 12) is given function of position, and (A 12) has a 
solution if and only if 

a condition which in general will not be satisfied. This application of the familiar 
Fredholm alternative shows that if G"' < 0 not only the uniqueness but also the 
continuity and perhaps the very existence of solutions of (A 4) are probably lost. 

(A 12) 

(A 13) 

C"(q,)V24 -Pq5 = - &%to). 

p m o )  $odS = 0, 
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